

Lungenfunktionsdiagnostik beim Kind

Was? Wann? Wie? Wo?

UNIVERSITÄTSSPITAL BERN HOPITAL UNIVERSITAIRE DE BERNE BERN UNIVERSITY HOSPITAL

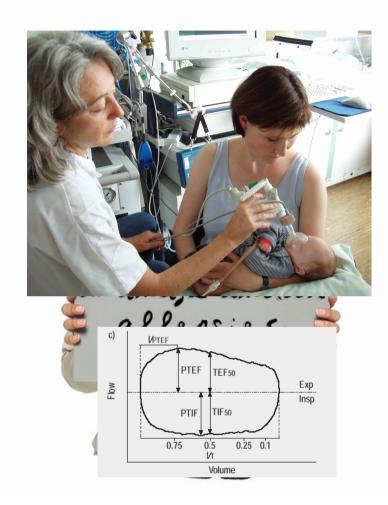
Prof. Dr.med. R. Kraemer Universitätsklinik für Kinderheilkunde

Lungenfunktionsdiagnostik in der Praxis

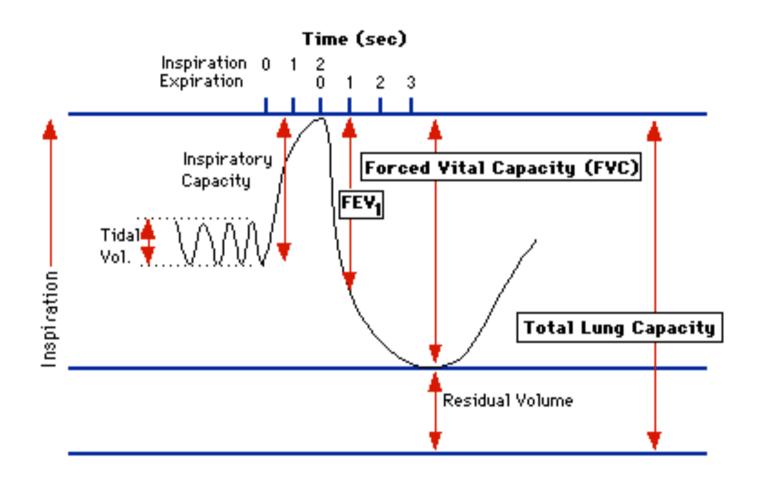
- Wichtigste Frage: wozu?
 - Objektivierung klinischer Befunde Frage: Weitere Abklärung im Zentrum
 - Erfassen eines funktionellen Schweregrades bezüglich Funktionsdefizite
 zB. Ausmass der Flusslimitierung (FEV₁) oder des "Small airway disease" (FEF₅₀)
 - Verlaufsbeurteilung

in Relation zu den Befunden aus dem Zentrum

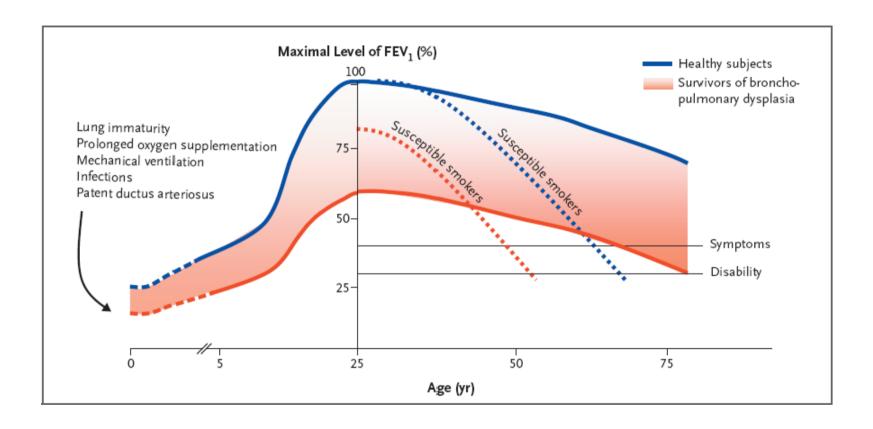
In einem pädiatrischen Tertiärzentrum:


- Erfassen neuer physiologischer und pathophysiologischer Zusammenhänge
- Erfassen von Struktur Funktions-Zusammenhänge
- Entwicklung neuer Techniken
- Untermauerung Epidemiologischer Studien
- Genotyp-Phänotyp Assoziationen

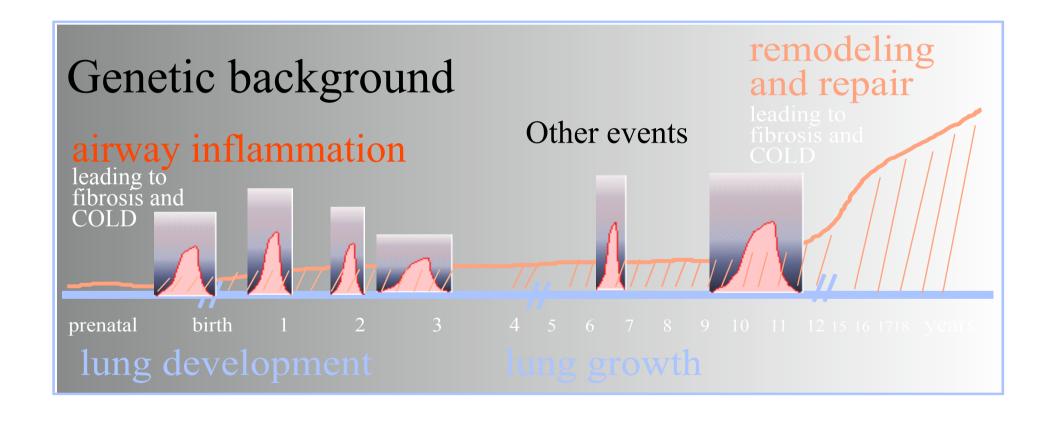
Ziel der Vorlesung


was, wann, wie, wo?

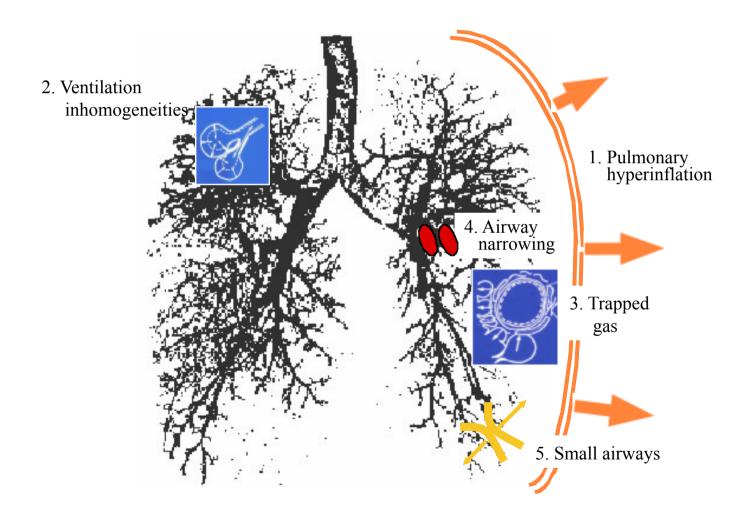
- Bedeutung der Lungenfunktionsdiagnostik beim Kind
- Funktionsdiagnostik beim Kind: Praxis versus Zentrum
- Lungenfunktionsdaten selbst beurteilen können
- Möglichkeiten der Funktionsdiagnostik in der Praxis
- Grenzen der Funktionsdiagnostik
- Spezifische Funktionsdefizite beim Kind



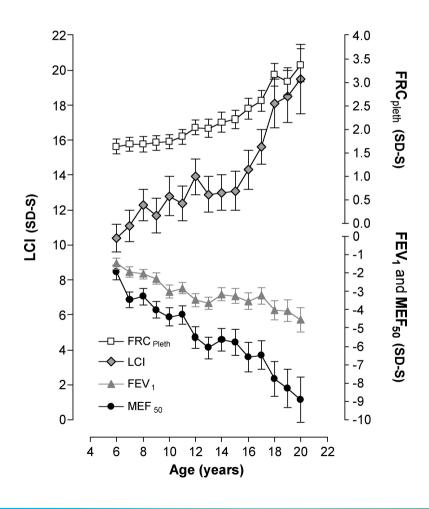
Lungenfunktionsprüfung


"Tracking" der Lungenfunktion

Baraldi & Fillipone, NEJM 2007



Progression of lung disease from infancy into adulthood: functional and structural changes of the growing lung



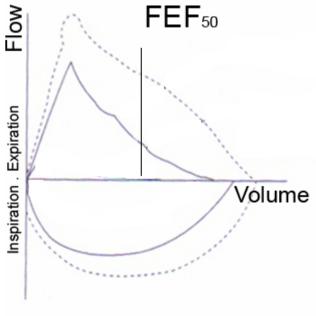
Was gibt es für "tools" zur Objektivierung funktioneller pulmonaler Defizite beim Kind

Progression der Lungenfunktion beim Kindern mit Cystischer Fibrose (n=180)

Indikationen

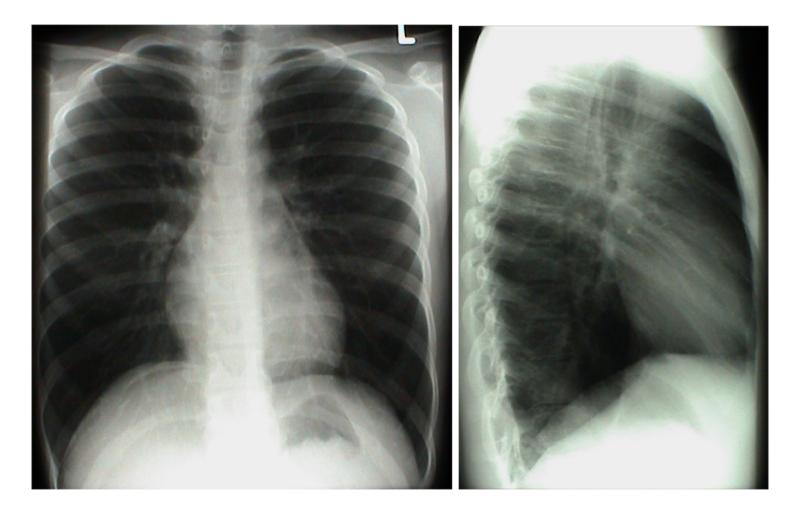
- Beschwerden wie Atemnot und/oder Husten und/oder Auswurf
 - (cave: Sinus maxillaris, Nasopharynx, Ohr)
- Verdacht auf Erkrankungen der Bronchien, der Lunge, des Herzens, des Thorax oder der Wirbelsäule
- Verlaufsbeobachtung bei broncho-pulmonalen Erkrankungen
- Therapiekontrolle broncho-pulmonaler Erkrankungen
- präoperative Prüfung der Lungenfunktion zur Beurteilung des Operationsrisikos
- arbeitsmedizinische Überwachung bei bestimmten Berufen (z.B. bei Staubexposition, im Rettungswesen)

Asthma bronchiale

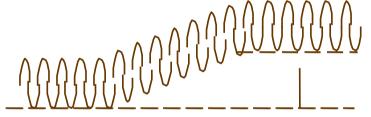

B.F.; 12-jähriger Knabe

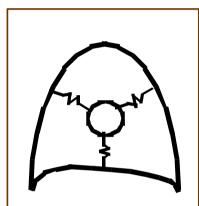
 Seit 8 Jahren in der Allergiesprechstunde bekannt wegen Rhinokonjunktivitis pollinosa; St.n. 3-jähriger subkutaner Hyposensibilisierung. Asthma bronchiale mit ausgeprägter Anstrengungsinduktion (IgE > 2000 U/ml; RAST positiv auf Gräser und Hausstaubmilben)

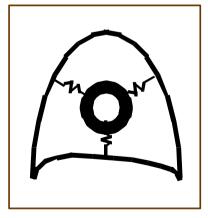
Funktionsdiagnostik in der Praxis


Erweiterte Funktionsdiagnostik

```
TLC 112 % VC 102 % FRC<sub>pleth</sub> 144 % RV 147 % Raw 124 %
```



Pulmonale Überblähung radiologisch

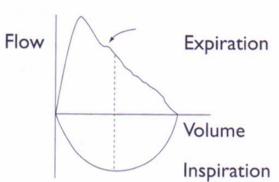




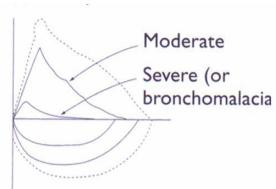
Pulmonale Überblähung

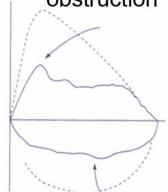
Asthma bronchiale bei 10-jährigen Mädchen

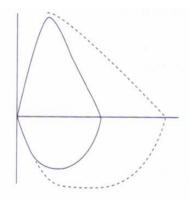
- J.L.: Wiederholte Episoden erschwerter Atmung, Atemnot, Pfeifen jeweils 3-4 Tage seit 5 Jahren
- P.A.: Geburt o.B.; Großvater: Rhinokonjunktivitis allergica
- **Umgebung:** feuchte Wohnung, keine Raucher in der Familie.
- Status: o.B.
- Hautteste: Dermatophagoides ++; Hund +; leicht auf Bäume/Wegerich

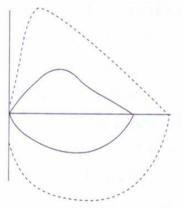


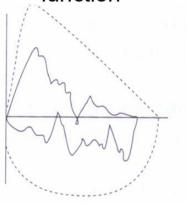
Lungenfunktionsprüfung


		vor	nach β_2
statische Lungenvolumina	TLC	90 %	89 %
	VC FRC _{pleth}	84 % 93 %	84 % 94 %
	RV	107 %	105 %
Atem- mechanik	Raw	257 %	149 %
dynamische Lungenolumina	FEV_1	79 %	87 %
	FEF ₅₀	89 %	94 %


A) Normal


B) Airway obstruction


C) Fixed central obstruction

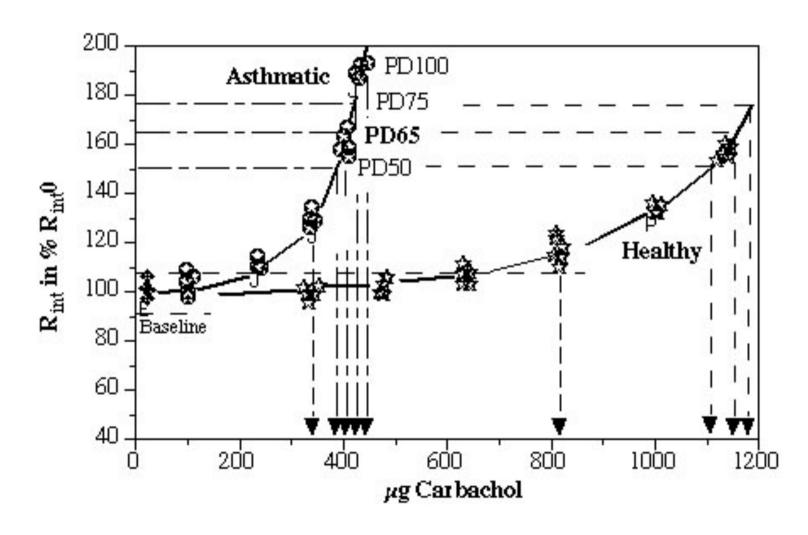

D) Restrictive disease

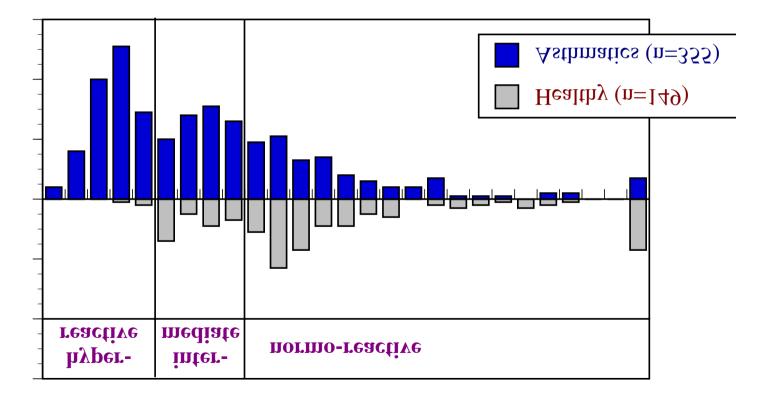
E) Respiratory muscle weakness

F) Vocal cord dysfunction

Asthma bronchiale

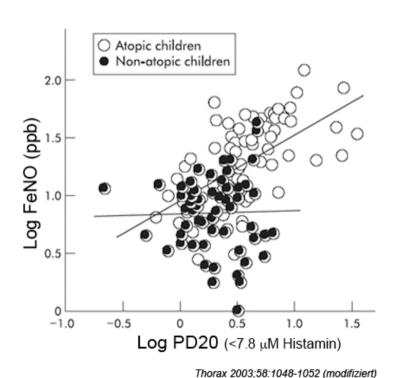
bei 12-jähriger Knabe


- Seit 8 Jahren in der Allergiesprechstunde bekannt wegen Rhinokonjunktivitis pollinosa; St.n. 3-jähriger subkutaner Hyposensibilisierung. Asthma bronchiale mit ausgeprägter Anstrengungsinduktion (IgE > 2000 U/ml; RAST positiv auf Gräser und Hausstaubmilben)
- Funktionsdiagnostik in der Praxis


_	FEF50	58 %	•
_	FEV1	97 %	
_	VC	102 %	

- Erweiterte Funktionsdiagnostik
 - TLC 112 %
 VC 102 %
 FRC 144 %
 RV 147 %
 Raw 124 %
- Bronchiale Übererregbarkeit (BHR)
 - PD65125 ug/ml Carbachol

Inhalative Provokationstestung



Bronchiale Reagibilität

Atopisches versus nicht-atopisches Asthma bronchiale

Zuweisung aus der Praxis

B.A. 16.07.99 NAME ID-HR 9821 DATUM : 18.DEZ. SE? : MANN ALTER : 8 JAHR GROBE : 132 CM %-SQLL : 100 % **■** 1.0 WERTE SULL %SOLL UC EXSP. : 2720 ML 1940 ML 147 % ■ FUC WERTE SOLL %SOLL FUC : 1878 ML 1840 ML 58 % FEU1.0 200 ML 1560 ML 12 % FEU1.0% 18 % 84 % 21 % FEU1.8/UC : 7 % 84 % 8 % PEFR 0.56 L/S 2.48 L/S 22 % MEF25% : 0.53 L/S 3.48 L/S 15 % __1EF50% : 0.43 L/S 2.58 L/S 16 % MEF75% : 0.19 L/S 1.41 L/S 13 % MMF : 0.39 L/S 2,27 L/S 17 × MUU43 8.6 L/M

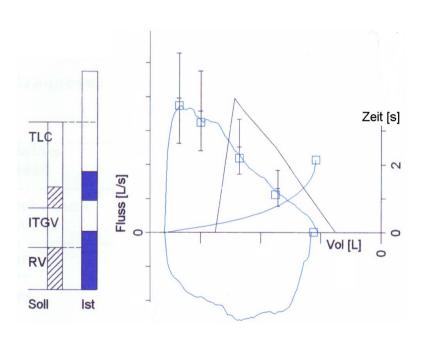
 8 Jahre alter Knabe mit Asthma bronchiale

- Vitalkapazität: 159 % sw

– Forcierte VC: 83 % sw

 $-FEF_{50}$: 10 % sw

• Nach ß2-Inhlation:


Vitalkapazität: 147 % sw

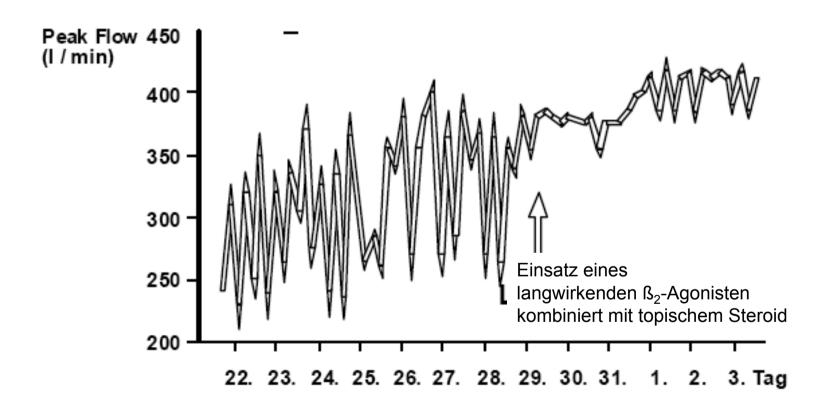
- Forcierte VC: 58 % sw

 $- FEF_{50}$: 16 % sw

Abklärung in der Asthma Sprechstunde

		MVV	% SW
TLC	[L]	3.65	130
VC IN	[L]	2.41	115
ITGV	[L]	1.50	110
FRC MBNW	[1]		
RV	[L]	0.98	138
R eff	[kPa*s/L]	0.55	140
SR eff	[kPa*s]	0.96	179
VC IN	[L]	2.41	115
FVC	[L]	2.52	125
FEV 1	[L]	2.09	123
FEV 1 % VC IN	[%]	86.79	102
PEF	[L/s]	3.73	95
MEF 75	[L/s]	3.24	91
MEF 50	[L/s]	2.18	87
MEF 25	[L/s]	1.11	86
PIF	[L/s]	2.59	

Der Peakflowmeter



"Bei spirometrischen Untersuchungen muß der Proband mit Nachdruck auf die Wichtigkeit der maximalen Anstrengung hingewiesen und nötigenfalls korrigiert werden." (nach F. Schnellbächer und U. Schmidt)

Longitudinale PF-Messung

Kleine Lungenfunktionsgeräte

MS01 PF,FVC.FEV₁

MS07: FEV₁, FVC, PEF mit Sollwertvergleich. Zsätzlich FEF₅₀, FEF₂₅ und MEF₂₅₋₇₅ oder MMEF

grosser Speicher

Für Verlaufsbeobachtungen

Lungenfunktionsgerät für die Praxis

MicroLab ML3500

Druckerspirometer für genaue Lungenfunktionsdiagnostik in der Arztpraxis.

Folgende reproduzierbare Werte im Vergleich zu Sollwerten für Erwachsene und Kinder: VC, FEV_1 , PEF, FVC, FER, FEF_{50} , FEF_{25-75} , MIF_{50}

sowie das Verhältnis MEF50/MIF50

Pre-/Post-Test mit Vergleich

Preis: sFr 3'482.-

Isoflow Whistle

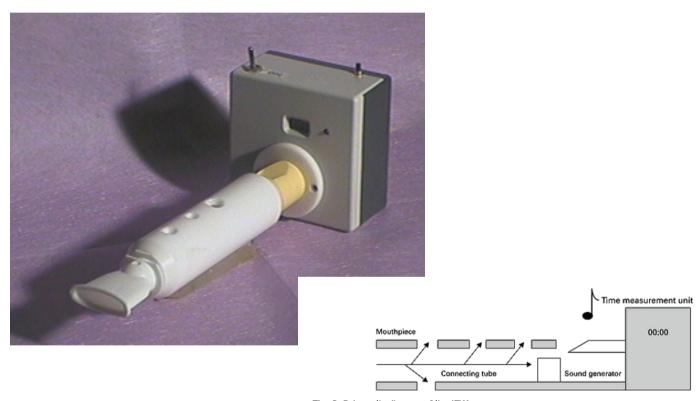
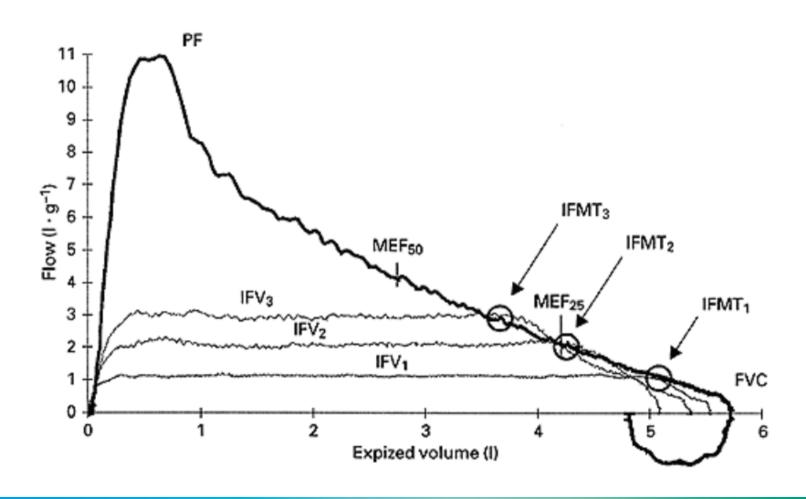



Fig. 2. Schematic diagram of the IFW.

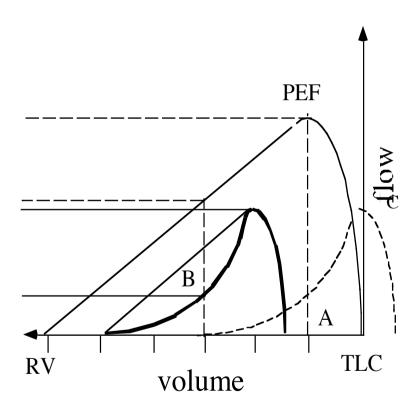
Isoflow Whistle technique

Zusammenfassung

- Lungenfunktionsdiagnostik beim "wachsenden" Kind (Sollwerte, Progredienz, quantitative und qualitative Funktionsdefizite)
- Pulmonale Überblähung (cave: pseudo-normale Lungenfunktionswerte)
- Bronchiale Hyperreaktivität
- Atopisches Nichtatopisches Asthma bronchiale
- Lungenfunktionsgeräte für die Praxis

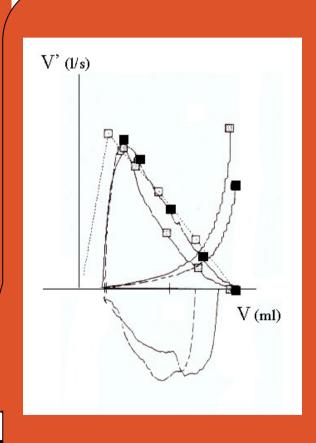
Lungenfunktionsdiagnostik beim Kind

in der Praxis


- Was?
 - Fluss-Volumenkurve: wichtigster Parameter FEF₅₀
- Wann?
 - Im symptomfreien Intervall
 - Als Verlaufskontrolle
 - Zur Objektivierung von klinischen Befunden
- Wie?
 - Mit geschulter MTA
- Wo?
 - In Zusammenarbeit mit einem Zentrum
- Angebot
 - richard.kraemer@insel.ch

Inconveniences with flow-volume curves in CF

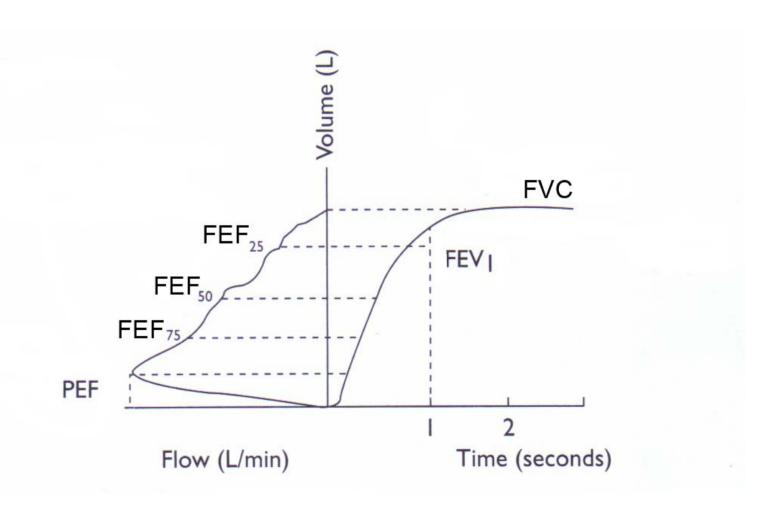
- Co-operation dependent
- Effort-dependent
- Influenced by pulmonary restriction (A)
- Influenced by retraction deficiency of the lung (B)
- If pulmonary hyperinflation is present, the flow volume curve is shifted to higher lung volumes (C)



TAL BERN AIRE DE BERN SPITAL

Lungenfunktionsprüfung

bei 10-jährigem Mädchen mit Asthma bron


Statische Lungenvolumaina: –TLC: total lung capacity	TLC
–VC: vital capacity –FRC: funktionelle	VC
Residualkapazität	FRC
–RV: residual volume	RV
Atemmechanik: -sR _{eff} : airway resistance (effective)	sR _{eff}
Dynamische Lungenvolumina: –FEV ₁ : forced expired volume in	FEV ₁
1 second –FEF ₅₀ : maximal flow at 50 % VC	FEF ₅₀

TLC

Fluss-Volumenkurve und FEV₁

